

Reg.	No.	:	***	 	•••	•••	••••	••••	
Name									

Fourth Semester B.Tech. Degree Examination, July 2015 (2008 Scheme)

08.405 : ANALOG INTEGRATED CIRCUITS (T)

Time: 3 Hours Max. Marks: 100

PART-A

Answer all questions. Each question carries 4 marks.

- 1. An opamp has a slew rate of $0.5 \text{ V/}\mu$ S. Determine the highest possible operating frequency for a peak value of 1V output voltage.
- 2. Design a circuit to perform the following summing operation $V_0 = 80V_1 + 120V_2 200V_3$ with a requirement that $R_{in} \ge 100 \text{ K}\Omega$ at all external inputs.
- 3. Why is frequency compensation required in operational amplifier?
- 4. In a circuit of inverting comparator with positive feedback, feedback factor is 2×10^{-3} . 1V peak to peak sine wave is applied to the input. Output saturation voltage of the opamp is \pm 13V. Determine the threshold voltages.
- Design a first order high-pass filter for cut-off frequency of 400 Hz and pass-band gain of 1.
- 6. Give the features of switched capacitor filters.
- 7. How many comparators are required in a 3-bit flash ADC? For an input signal in the range of 0 to 7V, what are the reference voltages required?
- 8. Show how to convert a simple emitter coupled pair into two quadrant multiplier.
- 9. Explain the application of PLL for AM detection.
- Explain foldback current limiting technique in the voltage regulator IC 723.
 (10x4=40 Marks)

PART-B

Answer any two questions from each Module. Each question carries 10 marks.

Module - I

11.	Draw basic two stage CMOS opamp configuration. A two-stage CMOS operational amplifier uses $\pm~2.5$ V. All transistors are operated at overdrive voltages of 0.3 V magnitude. The threshold voltages of the transistors are $V_{tn} = V_{tp} = 0.7$ V. Find the input common-mode range and output swing.	10				
12.	2. Derive the expression for frequency of oscillation and condition for oscillation in opamp based RC phase shift oscillator.					
13.	Draw the circuit of Triangular wave generator and derive the expression for frequency of the triangular wave.	10				
	Module – II					
14.	Design second order low pass Butterworth filter with a –3dB frequency of 10 KHz.	10				
15.	Explain second order switched capacitor Tow-Thomas filter.	10				
16.	Describe 4-bit D/A converter using an R-2R ladder network.	10				
	Module – III					
17.	In a Gilbert multiplier circuit, show that the differential output current $I_0 = I_E$ $(tanhV_x/2V_T)$ $(tanhV_y/2V_T)$, where I_E is the constant DC biasing current, V_x and V_y are differential input voltages. Assume that all transistors are identical and base	10				
10	currents and output resistances are neglected.	10				
18.	a) Design a monostable multivibrator using 555 for a pulse width of 10 ms.b) Design IC 723 based low voltage regulator.	5				
40	2) 200.gr. 10 / 20 based 15W Voltage regulator.	5				
19.	Explain the block schematic of IC LM 565 and design it as FSK demodulator.	10				
	reducted MATOLLIPTO Hollestic (6×10=60 Mar	ks)				